Research

Biomimetic Materials and Processes Biomineralization Morphosynthesis and Self-Organization Nonclassical Crystallization Process-Structure-Property Relationships

Biominerals, such as sea urchin spines and mollusk shells, are biogenically formed composite ceramics which show superb adaptation for given tasks. The 542 million years of evolution since the Cambrian explosion has rendered biominerals an immense source of inspiration for both material design and for the creation of ceramic materials at ambient temperature. The key step during genesis of these biogenic ceramics is the controlled solid-amorphous to crystalline transformation from a transient precursor to a highly co-oriented mosaic crystal. This solid-to-solid phase transformation is pseudomorphic, i.e. it proceeds with conservation of the macroscopic morphology of the mineral body which eventually leads to non-equilibrium shaped crystalline forms. Therefore, biominerals and biomineralization itself represents a huge source of inspiration for the synthesis of functional materials under morphological control. As of yet, the formation of ceramics at ambient conditions for anthropogenic ceramic materials is still in its infancy and Nature may guide us on this venture.

Fundamentals of Nucleation and Crystal Growth in Real Systems

Our research in biomimetic crystallization taught us that crystallization processes are not well understood for real systems; the classical models as given in 1920's work explicitly well for simple model systems (i.e. melts, NaCl, etc.). But already simple additives, such as polyacrylic acid, can strongly intervene in the crystallization process and trigger so-called Noncassical Crystallization processes. These processes i.e. oriented attachment, prenucleation cluster, and liquid-condensed mineral precursors (PILP) question our current understanding of crystal birth and growth. The third member of the nonclassical triumvirate is the so-called Polymer-Induced Liquid-Precursor Process (PILP), a process which has pronounced morphosynthetical potential. It proceeds in a colloid-mediated fashion via a liquid-phase amorphous intermediate. By addition of tiny amounts of poly-ionic polymers like poly-aspartate, poly-amines or selected biomineralization proteins, classical nucleation of a solid crystalline phase is suppressed which, in turn, promotes the formation of a liquid-condensed phase of mineral precursor. This unusual ion-enriched liquid-amorphous phase becomes the crucial agent of the precipitation reaction; the process of mineralization is converted from a solution crystallization process to a pseudomorphic solidification process. This change of pathway provides an efficient means to synthesize an impressive multitude of mineral morphologies, many of which mimic the features long considered enigmatic in biominerals.

Designing solid materials from their solute state: a Perspective in JACS.

“Non-classical” notions consider formation pathways of crystalline materials where larger species than monomeric chemical constituents, i.e., ions or single molecules, play crucial roles, which are not covered by the classical theories dating back to the 1870s and 1920s. Providing an outline of “non-classical” nucleation, we demonstrate that pre-nucleation clusters (PNCs) can lie on alternative pathways to phase separation, where the very event of demixing is not primarily based on the sizes of the species forming, as in the classical view, but their dynamics. Rationalizing, on the other hand, that precursors that can be analytically detected in pre-nucleation stages and that play a role in phase separation must be considered PNCs and cannot be explained by classical notions, we outline a variety of systems where PNCs are important. Indeed, in recent years, with the advent of “non-classical” theories, a primary focus of research concentrated on the fundamental understanding of oligomeric/polymeric and particulate species involved in nucleation and crystallization processes, respectively. At the same time, the near-to unfathomable potential of “non-classical” routes for the synthesis of inorganic functional materials slowly unfolds. An overview over recent developments in the fundamental and mechanistical understanding of “non-classical” nucleation and crystallization in this perspective then allows us mapping out the potential of cluster/particle-driven mineralization pathways to intrinsically tailor the properties of inorganic functional (hybrid) materials via structuration from the nano- to the mesoscale. This is of utter importance for the functionality and performance of materials as it may even confer emergent properties such as self-healing. Biominerals — often formed via particle accretion mechanisms— demonstrate this impressively and thus can serve as further source of inspiration how to exploit nonclassical crystallization routes for syntheses of structured and functional materials. These new avenues to synthetic approaches may finally provide a holistic material concept in whichfundamental chemistry and materials science synergistically alloy.

 

Read the full Perspective in J. Am. Chem. Soc. 2019

Chicken Eggs are Functionally Graded Materials

Avian (and formerly dinosaur) eggshells form a hard, protective biomineralized chamber for embryonic growth—an evolutionary strategy that has existed for hundreds of millions of years. We show in the calcitic chicken eggshell how the mineral and organic phases organize hierarchically across different length scales and how variation in nanostructure across the shell thickness modifies its hardness, elastic modulus, and dissolution properties. We also show that the nanostructure changes during egg incubation, weakening the shell for chick hatching. Nanostructure and increased hardness were reproduced in synthetic calcite crystals grown in the presence of the prominent eggshell protein osteopontin. These results demonstrate the contribution of nanostructure to avian eggshell formation, mechanical properties, and dissolution.

 

Check out online: Science Advances 2018

Nacre forms via a nonclassical route

Intricate biomineralization processes in molluscs engineer hierarchical structures with meso-, nano- and atomic architectures that give the final composite material exceptional mechanical strength and optical iridescence on the macroscale. This multiscale biological assembly inspires new synthetic routes to complex materials. Our investigation of the prism–nacre interface reveals nanoscale details governing the onset of nacre formation using high-resolution scanning transmission electron microscopy. A wedge-polishing technique provides unprecedented, large-area specimens required to span the entire interface. Within this region, we find a transition from nanofibrillar aggregation to irregular early-nacre layers, to well-ordered mature nacre suggesting the assembly process is driven by aggregation of nanoparticles (~50–80 nm) within an organic matrix that arrange in fibre-like polycrystalline configurations. The particle number increases successively and, when critical packing is reached, they merge into early-nacre platelets. These results give new insights into nacre formation and particle-accretion mechanisms that may be common to many calcareous biominerals.

Get Open-Acess Article from Nature Communications

Read Press Releases on Phys.org or IDW

Tilting Biomimetic Crystals

Classical crystal exhibit smooth and flat facets, they do not tilt. Only few examples are known in which the facets or the crystallographic organization of crystals show twisting or tilting. Employing amorphous calcium carbonate films synthesized by the polymer-induced liquid-precursor (PILP) process, we are able to convert these films into flat cylindrulites with crystallographically complex features. By tuning the experimental parameters,  we can generate crystal lattice tilting similar to that found in calcareous biominerals. This contribution, recently published in CrystEngCom evidences the role of spherulitic growth mechanisms in pseudomorphic transformations of calcium carbonate and hints to a hidden role of spherultic processes in vivo.

This contribution is part of a special issue on Nanocrystal Formation and is featured by the outer cover page. Find the OpenAccess article online on CrystEngCom

Publications

If you need a authors copy of one of the publications, do not hesitate to drop me a line: stephan.e.wolf@fau.de

Selected Publications
Complete List of Articles
Complete List of Books and Book Chapters
  1. Nanoscale assembly processes revealed in the nacroprismatic transition zone of Pinna nobilis mollusc shells
    Robert Hovden*, Stephan E. Wolf*, Megan E. Holtz, Frédéric Marin, David A. Muller and Lara A. Estroff (* equal contribution) in Nature Communications (2015) , Vol. 6, No. 10097. DOI:10.1038/ncomms10097.
    Abstract: Intricate biomineralization processes in molluscs engineer hierarchical structures with meso-, nano- and atomic architectures that give the final composite material exceptional mechanical strength and optical iridescence on the macroscale. This multiscale biological assembly inspires new synthetic routes to complex materials. Our investigation of the prism–nacre interface reveals nanoscale details governing the onset of nacre formation using high-resolution scanning transmission electron microscopy. A wedge-polishing technique provides unprecedented, large-area specimens required to span the entire interface. Within this region, we find a transition from nanofibrillar aggregation to irregular early-nacre layers, to well-ordered mature nacre suggesting the assembly process is driven by aggregation of nanoparticles (~50–80 nm) within an organic matrix that arrange in fibre-like polycrystalline configurations. The particle number increases successively and, when critical packing is reached, they merge into early-nacre platelets. These results give new insights into nacre formation and particle-accretion mechanisms that may be common to many calcareous biominerals.
  2. Strong Stabilization of Amorphous Calcium Carbonate Emulsion by Ovalbumin: Gaining Insight into the Mechanism of 'Polymer-Induced Liquid Precursor' Processes.
    Stephan E. Wolf, Jork Leiterer, Vitaliy Pipich, Raul Barrea, Franziska Emmerling and Wolfgang Tremel in J. Am. Chem. Soc. (2011) , Vol. 132, No. 32, pp. 1520-6. DOI:10.1021/ja202622g.
    Abstract: The impact of the ovo proteins ovalbumin and lysozyme—present in the first stage of egg shell formation—on the homogeneous formation of the liquid amorphous calcium carbonate (LACC) precursor, was studied by a combination of complementing methods: in situ WAXS, SANS, XANES, TEM, and immunogold labeling. Lysozyme (pI = 9.3) destabilizes the LACC emulsion whereas the glycoprotein ovalbumin (pI = 4.7) extends the lifespan of the emulsified state remarkably. In the light of the presented data: (a) Ovalbumin is shown to behave commensurable to the 'polymer-induced liquid precursor' (PILP) process proposed by Gower et al. Ovalbumin can be assumed to take a key role during eggshell formation where it serves as an effective stabilization agent for transient precursors and prevents undirected mineralization of the eggshell. (b) It is further shown that the emulsified LACC carries a negative surface charge and is electrostatically stabilized. (c) We propose that the liquid amorphous calcium carbonate is affected by polymers by depletion stabilization and de-emulsification rather than 'induced' by acidic proteins and polymers during a so-called polymer-induced liquid-precursor process. The original PILP coating effect, first reported by Gower et al., appears to be a result of a de-emulsification process of a stabilized LACC phase. The behavior of the liquid amorphous carbonate phase and the polymer-induced liquid-precursor phase itself can be well described by colloid chemical terms: electrostatic and depletion stabilization and de-emulsification by depletion destabilization.
  3. Formation of silicones mediated by the sponge enzyme silicatein-α
    Stephan E. Wolf, Ute Schlossmacher, Anna Pietuch, Bernd Mathiasch, Heinz-Christoph Schröder, Werner E G Müller and Wolfgang Tremel in Dalton Transact. (2010) , Vol. 39, pp. 9245-9. DOI:10.1039/B921640E. This article is part of a themed issue: New Horizon of Organosilicon Chemistry.
    Abstract: The sponge-restricted enzyme silicatein-α catalyzes in vivo silica formation from monomeric silicon compounds from sea water (i.e. silicic acid) and plays the pivotal role during synthesis of the siliceous sponge spicules. Recombinant silicatein-α, which was cloned from the demosponge Suberites domuncula (phylum Porifera), is shown to catalyze in vitro condensation of alkoxy silanes during a phase transfer reaction at neutral pH and ambient temperature to yield silicones like the straight-chained polydimethylsiloxane (PDMS). The reported condensation reaction is considered to be the first description of an enzymatically enhanced organometallic condensation reaction.
  4. Early homogenous amorphous precursor stages of calcium carbonate and subsequent crystal growth in levitated droplets.
    Stephan E. Wolf, Jork Leiterer and Michael Kappl, Franziska Emmerling and Wolfgang Tremel in J. Am. Chem. Soc. (2008) , Vol. 130, No. 37, pp. 12342-7. DOI:10.1021/ja800984y. Highlighted in Nachr. Chemie (2009).
    Abstract: An in situ study of the contact-free crystallization of calcium carbonate in acoustic levitated droplets is reported. The levitated droplet technique allows an in situ monitoring of the crystallization while avoiding any foreign phase boundaries that may influence the precipitation process by heterogeneous nucleation. The diffusion-controlled precipitation of CaCO3 at neutral pH starts in the initial step with the homogeneous formation of a stable, nanosized liquid-like amorphous calcium carbonate phase that undergoes in a subsequent step a solution-assisted transformation to calcite. Cryogenic scanning electron microscopy studies indicate that precipitation is not induced at the solution/air interface. Our findings demonstrate that a liquid-liquid phase separation occurs at the outset of the precipitation under diffusion-controlled conditions (typical for biomineral formation) with a slow increase of the supersaturation at neutral pH.
  5. Phase selection of calcium carbonate through the chirality of adsorbed amino acids.
    Stephan E. Wolf, Niklas Loges, Bernd Mathiasch, Martin Panthöfer, Ingo Mey, Andreas Janshoff and Wolfgang Tremel in Angew. Chem. Int. Ed. (2007) , Vol. 46, No. 29, pp. 5618-23. DOI:10.1002/anie.200700010. This is featured as a VIP paper.
    Abstract: On the phase of it: The phase selection of calcium carbonate (spheres: C gray, Ca green, O red) is determined by chiral amino acids (stick models) present during the crystallization. The interplay of composition and chirality of the crystal surfaces and additives leads to enantiospecific adsorption of the D and L amino acids on chiral surface steps. The resulting surface passivation creates a kinetic barrier, which controls the phase selection.

Get in touch

Looking for research opportunities, open positions, or just want to contact The Wolf Group?

General applications for postgraduate studentships and postdoc positions are welcome at any time of the year. Please send your application documents simply by email and refer to this website. We offer also throughout the year various topics for Master- and Bachelor theses, and also for internships and miniprojects. If you are interested to do your thesis or an internship with us, just drop me a mail and we will fix an appointment for discussion of the currently available research projects: stephan.e.wolf@fau.de

 

PD Dr. rer. nat. Stephan E. Wolf
Emmy Noether Fellow & Senior lecturer
Department of Materials Science and Engineering
Institute of Glass and Ceramics - https://www.glass-ceramics.tf.fau.de/
Friedrich-Alexander-University Erlangen-Nürnberg - https://www.fau.de/
Martensstr. 5, 91058 Erlangen, Germany
Fone +49 9131 85-27565
Fax +49 9131 85-28311
stephan.e.wolf@fau.de

Datenschutzerklärung

Datenschutzerklärung in Deutsch
Data Privacy Protection in English

Datenschutzerklärung

Personenbezogene Daten (nachfolgend zumeist nur „Daten“ genannt) werden von uns nur im Rahmen der Erforderlichkeit sowie zum Zwecke der Bereitstellung eines funktionsfähigen und nutzerfreundlichen Internetauftritts, inklusive seiner Inhalte und der dort angebotenen Leistungen, verarbeitet.

Gemäß Art. 4 Ziffer 1. der Verordnung (EU) 2016/679, also der Datenschutz-Grundverordnung (nachfolgend nur „DSGVO“ genannt), gilt als „Verarbeitung“ jeder mit oder ohne Hilfe automatisierter Verfahren ausgeführter Vorgang oder jede solche Vorgangsreihe im Zusammenhang mit personenbezogenen Daten, wie das Erheben, das Erfassen, die Organisation, das Ordnen, die Speicherung, die Anpassung oder Veränderung, das Auslesen, das Abfragen, die Verwendung, die Offenlegung durch Übermittlung, Verbreitung oder eine andere Form der Bereitstellung, den Abgleich oder die Verknüpfung, die Einschränkung, das Löschen oder die Vernichtung.

Mit der nachfolgenden Datenschutzerklärung informieren wir Sie insbesondere über Art, Umfang, Zweck, Dauer und Rechtsgrundlage der Verarbeitung personenbezogener Daten, soweit wir entweder allein oder gemeinsam mit anderen über die Zwecke und Mittel der Verarbeitung entscheiden. Zudem informieren wir Sie nachfolgend über die von uns zu Optimierungszwecken sowie zur Steigerung der Nutzungsqualität eingesetzten Fremdkomponenten, soweit hierdurch Dritte Daten in wiederum eigener Verantwortung verarbeiten.

Unsere Datenschutzerklärung ist wie folgt gegliedert:

I. Informationen über uns als Verantwortliche
II. Rechte der Nutzer und Betroffenen
III. Informationen zur Datenverarbeitung

I. Informationen über uns als Verantwortliche

Verantwortlicher Anbieter und Datenschutzbeauftragte/r dieses Internetauftritts im datenschutzrechtlichen Sinne ist:

Dr Stephan E Wolf
Martensstrasse 5
91058 Erlangen
Deutschland

Telefon: +49 (0) 9131 8527543
Telefax: +49 (0) 9131 8528311
E-Mail: stephan.e.wolf@fau.de

II. Rechte der Nutzer und Betroffenen

Mit Blick auf die nachfolgend noch näher beschriebene Datenverarbeitung haben die Nutzer und Betroffenen das Recht

Darüber hinaus ist der Anbieter dazu verpflichtet, alle Empfänger, denen gegenüber Daten durch den Anbieter offengelegt worden sind, über jedwede Berichtigung oder Löschung von Daten oder die Einschränkung der Verarbeitung, die aufgrund der Artikel 16, 17 Abs. 1, 18 DSGVO erfolgt, zu unterrichten. Diese Verpflichtung besteht jedoch nicht, soweit diese Mitteilung unmöglich oder mit einem unverhältnismäßigen Aufwand verbunden ist. Unbeschadet dessen hat der Nutzer ein Recht auf Auskunft über diese Empfänger.

Ebenfalls haben die Nutzer und Betroffenen nach Art. 21 DSGVO das Recht auf Widerspruch gegen die künftige Verarbeitung der sie betreffenden Daten, sofern die Daten durch den Anbieter nach Maßgabe von Art. 6 Abs. 1 lit. f) DSGVO verarbeitet werden. Insbesondere ist ein Widerspruch gegen die Datenverarbeitung zum Zwecke der Direktwerbung statthaft.

III. Informationen zur Datenverarbeitung

Ihre bei Nutzung unseres Internetauftritts verarbeiteten Daten werden gelöscht oder gesperrt, sobald der Zweck der Speicherung entfällt, der Löschung der Daten keine gesetzlichen Aufbewahrungspflichten entgegenstehen und nachfolgend keine anderslautenden Angaben zu einzelnen Verarbeitungsverfahren gemacht werden.

Serverdaten

Aus technischen Gründen, insbesondere zur Gewährleistung eines sicheren und stabilen Internetauftritts, werden Daten durch Ihren Internet-Browser an uns bzw. an unseren Webspace-Provider übermittelt. Mit diesen sog. Server-Logfiles werden u.a. Typ und Version Ihres Internetbrowsers, das Betriebssystem, die Website, von der aus Sie auf unseren Internetauftritt gewechselt haben (Referrer URL), die Website(s) unseres Internetauftritts, die Sie besuchen, Datum und Uhrzeit des jeweiligen Zugriffs sowie die IP-Adresse des Internetanschlusses, von dem aus die Nutzung unseres Internetauftritts erfolgt, erhoben.

Diese so erhobenen Daten werden vorrübergehend gespeichert, dies jedoch nicht gemeinsam mit anderen Daten von Ihnen.

Diese Speicherung erfolgt auf der Rechtsgrundlage von Art. 6 Abs. 1 lit. f) DSGVO. Unser berechtigtes Interesse liegt in der Verbesserung, Stabilität, Funktionalität und Sicherheit unseres Internetauftritts.

Die Daten werden spätestens nach sieben Tage wieder gelöscht, soweit keine weitere Aufbewahrung zu Beweiszwecken erforderlich ist. Andernfalls sind die Daten bis zur endgültigen Klärung eines Vorfalls ganz oder teilweise von der Löschung ausgenommen.

Cookies
a) Sitzungs-Cookies/Session-Cookies

Wir verwenden mit unserem Internetauftritt sog. Cookies. Cookies sind kleine Textdateien oder andere Speichertechnologien, die durch den von Ihnen eingesetzten Internet-Browser auf Ihrem Endgerät ablegt und gespeichert werden. Durch diese Cookies werden im individuellen Umfang bestimmte Informationen von Ihnen, wie beispielsweise Ihre Browser- oder Standortdaten oder Ihre IP-Adresse, verarbeitet.  

Durch diese Verarbeitung wird unser Internetauftritt benutzerfreundlicher, effektiver und sicherer, da die Verarbeitung bspw. die Wiedergabe unseres Internetauftritts in unterschiedlichen Sprachen oder das Angebot einer Warenkorbfunktion ermöglicht.

Rechtsgrundlage dieser Verarbeitung ist Art. 6 Abs. 1 lit b.) DSGVO, sofern diese Cookies Daten zur Vertragsanbahnung oder Vertragsabwicklung verarbeitet werden.

Falls die Verarbeitung nicht der Vertragsanbahnung oder Vertragsabwicklung dient, liegt unser berechtigtes Interesse in der Verbesserung der Funktionalität unseres Internetauftritts. Rechtsgrundlage ist in dann Art. 6 Abs. 1 lit. f) DSGVO.

Mit Schließen Ihres Internet-Browsers werden diese Session-Cookies gelöscht.

b) Drittanbieter-Cookies

Gegebenenfalls werden mit unserem Internetauftritt auch Cookies von Partnerunternehmen, mit denen wir zum Zwecke der Werbung, der Analyse oder der Funktionalitäten unseres Internetauftritts zusammenarbeiten, verwendet.

Die Einzelheiten hierzu, insbesondere zu den Zwecken und den Rechtsgrundlagen der Verarbeitung solcher Drittanbieter-Cookies, entnehmen Sie bitte den nachfolgenden Informationen.

c) Beseitigungsmöglichkeit

Sie können die Installation der Cookies durch eine Einstellung Ihres Internet-Browsers verhindern oder einschränken. Ebenfalls können Sie bereits gespeicherte Cookies jederzeit löschen. Die hierfür erforderlichen Schritte und Maßnahmen hängen jedoch von Ihrem konkret genutzten Internet-Browser ab. Bei Fragen benutzen Sie daher bitte die Hilfefunktion oder Dokumentation Ihres Internet-Browsers oder wenden sich an dessen Hersteller bzw. Support. Bei sog. Flash-Cookies kann die Verarbeitung allerdings nicht über die Einstellungen des Browsers unterbunden werden. Stattdessen müssen Sie insoweit die Einstellung Ihres Flash-Players ändern. Auch die hierfür erforderlichen Schritte und Maßnahmen hängen von Ihrem konkret genutzten Flash-Player ab. Bei Fragen benutzen Sie daher bitte ebenso die Hilfefunktion oder Dokumentation Ihres Flash-Players oder wenden sich an den Hersteller bzw. Benutzer-Support.

Sollten Sie die Installation der Cookies verhindern oder einschränken, kann dies allerdings dazu führen, dass nicht sämtliche Funktionen unseres Internetauftritts vollumfänglich nutzbar sind.

Kontaktanfragen / Kontaktmöglichkeit

Sofern Sie per Kontaktformular oder E-Mail mit uns in Kontakt treten, werden die dabei von Ihnen angegebenen Daten zur Bearbeitung Ihrer Anfrage genutzt. Die Angabe der Daten ist zur Bearbeitung und Beantwortung Ihre Anfrage erforderlich - ohne deren Bereitstellung können wir Ihre Anfrage nicht oder allenfalls eingeschränkt beantworten.

Rechtsgrundlage für diese Verarbeitung ist Art. 6 Abs. 1 lit. b) DSGVO.

Ihre Daten werden gelöscht, sofern Ihre Anfrage abschließend beantwortet worden ist und der Löschung keine gesetzlichen Aufbewahrungspflichten entgegenstehen, wie bspw. bei einer sich etwaig anschließenden Vertragsabwicklung.

Twitter

Wir unterhalten bei Twitter eine Onlinepräsenz um unser Unternehmen sowie unsere Leistungen zu präsentieren und mit Kunden/Interessenten zu kommunizieren. Twitter ist ein Service der Twitter Inc., 1355 Market Street, Suite 900, San Francisco, CA 94103, USA.

Insofern weisen wir darauf hin, dass die Möglichkeit besteht, dass Daten der Nutzer außerhalb der Europäischen Union, insbesondere in den USA, verarbeitet werden. Hierdurch können gesteigerte Risiken für die Nutzer insofern bestehen, als dass z.B. der spätere Zugriff auf die Nutzerdaten erschwert werden kann. Auch haben wir keinen Zugriff auf diese Nutzerdaten. Die Zugriffsmöglichkeit liegt ausschließlich bei Twitter. Die Twitter Inc. ist unter dem Privacy Shield zertifiziert und hat sich damit verpflichtet, die europäischen Datenschutzstandards einzuhalten

https://www.privacyshield.gov/participant?id=a2zt0000000TORzAAO&status=Active

Die Datenschutzhinweise von Twitter finden Sie unter

https://twitter.com/de/privacy

Muster-Datenschutzerklärung der Anwaltskanzlei Weiß & Partner

Privacy Policy

Personal data (usually referred to just as "data" below) will only be processed by us to the extent necessary and for the purpose of providing a functional and user-friendly website, including its contents, and the services offered there.

Per Art. 4 No. 1 of Regulation (EU) 2016/679, i.e. the General Data Protection Regulation (hereinafter referred to as the "GDPR"), "processing" refers to any operation or set of operations such as collection, recording, organization, structuring, storage, adaptation, alteration, retrieval, consultation, use, disclosure by transmission, dissemination, or otherwise making available, alignment, or combination, restriction, erasure, or destruction performed on personal data, whether by automated means or not.

The following privacy policy is intended to inform you in particular about the type, scope, purpose, duration, and legal basis for the processing of such data either under our own control or in conjunction with others. We also inform you below about the third-party components we use to optimize our website and improve the user experience which may result in said third parties also processing data they collect and control.

Our privacy policy is structured as follows:

I. Information about us as controllers of your data
II. The rights of users and data subjects
III. Information about the data processing

I. Information about us as controllers of your data

The party responsible for this website (the "controller") and data protection officer for purposes of data protection law is:

Dr Stephan E Wolf
Martensstrasse 5
91058 Erlangen
Germany

Telephone: +49 (0) 9131 8527543
Fax: +49 (0) 9131 8528311
E-Mail: stephan.e.wolf@fau.de

II. The rights of users and data subjects

With regard to the data processing to be described in more detail below, users and data subjects have the right

In addition, the controller is obliged to inform all recipients to whom it discloses data of any such corrections, deletions, or restrictions placed on processing the same per Art. 16, 17 Para. 1, 18 GDPR. However, this obligation does not apply if such notification is impossible or involves a disproportionate effort. Nevertheless, users have a right to information about these recipients.

Likewise, under Art. 21 GDPR, users and data subjects have the right to object to the controller's future processing of their data pursuant to Art. 6 Para. 1 lit. f) GDPR. In particular, an objection to data processing for the purpose of direct advertising is permissible.

III. Information about the data processing

Your data processed when using our website will be deleted or blocked as soon as the purpose for its storage ceases to apply, provided the deletion of the same is not in breach of any statutory storage obligations or unless otherwise stipulated below.

Server data

For technical reasons, the following data sent by your internet browser to us or to our server provider will be collected, especially to ensure a secure and stable website: These server log files record the type and version of your browser, operating system, the website from which you came (referrer URL), the webpages on our site visited, the date and time of your visit, as well as the IP address from which you visited our site.

The data thus collected will be temporarily stored, but not in association with any other of your data.

The basis for this storage is Art. 6 Para. 1 lit. f) GDPR. Our legitimate interest lies in the improvement, stability, functionality, and security of our website.

The data will be deleted within no more than seven days, unless continued storage is required for evidentiary purposes. In which case, all or part of the data will be excluded from deletion until the investigation of the relevant incident is finally resolved.

Cookies
a) Session cookies

We use cookies on our website. Cookies are small text files or other storage technologies stored on your computer by your browser. These cookies process certain specific information about you, such as your browser, location data, or IP address.  

This processing makes our website more user-friendly, efficient, and secure, allowing us, for example, to display our website in different languages or to offer a shopping cart function.

The legal basis for such processing is Art. 6 Para. 1 lit. b) GDPR, insofar as these cookies are used to collect data to initiate or process contractual relationships.

If the processing does not serve to initiate or process a contract, our legitimate interest lies in improving the functionality of our website. The legal basis is then Art. 6 Para. 1 lit. f) GDPR.

When you close your browser, these session cookies are deleted.

b) Third-party cookies

If necessary, our website may also use cookies from companies with whom we cooperate for the purpose of advertising, analyzing, or improving the features of our website.

Please refer to the following information for details, in particular for the legal basis and purpose of such third-party collection and processing of data collected through cookies.

c) Disabling cookies

You can refuse the use of cookies by changing the settings on your browser. Likewise, you can use the browser to delete cookies that have already been stored. However, the steps and measures required vary, depending on the browser you use. If you have any questions, please use the help function or consult the documentation for your browser or contact its maker for support. Browser settings cannot prevent so-called flash cookies from being set. Instead, you will need to change the setting of your Flash player. The steps and measures required for this also depend on the Flash player you are using. If you have any questions, please use the help function or consult the documentation for your Flash player or contact its maker for support.

If you prevent or restrict the installation of cookies, not all of the functions on our site may be fully usable.

Contact

If you contact us via email or the contact form, the data you provide will be used for the purpose of processing your request. We must have this data in order to process and answer your inquiry; otherwise we will not be able to answer it in full or at all.

The legal basis for this data processing is Art. 6 Para. 1 lit. b) GDPR.

Your data will be deleted once we have fully answered your inquiry and there is no further legal obligation to store your data, such as if an order or contract resulted therefrom.

Twitter

We maintain an online presence on Twitter to present our company and our services and to communicate with customers/prospects. Twitter is a service provided by Twitter Inc., 1355 Market Street, Suite 900, San Francisco, CA 94103, USA.

We would like to point out that this might cause user data to be processed outside the European Union, particularly in the United States. This may increase risks for users that, for example, may make subsequent access to the user data more difficult. We also do not have access to this user data. Access is only available to Twitter. Twitter Inc. is certified under the Privacy Shield and committed to adhering to European privacy standards.

https://www.privacyshield.gov/participant?id=a2zt0000000TORzAAO&status=Active

The privacy policy of Twitter can be found at

https://twitter.com/privacy

Model Data Protection Statement for Anwaltskanzlei Weiß & Partner